

BCA SEMESTER-II

Object Oriented Programming using C++

Paper Code: BCA CC203

Unit :4

Types of Inheritance in C++

By: Ms. Nimisha Manan

Assistant Professor

Dept. of Computer Science

Patna Women’s College

Types of Inheritance in C++

1) Single inheritance

2) Multilevel inheritance

3) Multiple inheritance

4) Hierarchical inheritance

5) Hybrid inheritance

1) Single inheritance

In Single inheritance one derived class inherits from one base class only . It is the most simplest

form of Inheritance.

For example: Lets say we have class A and B

Example of Single inheritance:

//Class B inherits from Class A

#include <iostream.h>

class A

{ public:

 A()

 {cout<<"Constructor of A class"<<endl; }

};

class B: public A

{ public:

 B()

 {cout<<"Constructor of B class";}

};

int main()

{

 //Creating object of class B

 B obj;

 return 0;

}

Output:
Constructor of A class

Constructor of B class

2)Multilevel Inheritance

In this type of inheritance a class can be derived from another derived class. The Super

class for one, is sub class for the other.

Example of Multilevel inheritance:

//class C inherits from class B and class B inherits from class A

#include <iostream.h>

class A

{ public:

 A()

 {cout<<"Constructor of A class"<<endl; }

};

class B: public A

{ public:

 B()

 { cout<<"Constructor of B class"<<endl; }

 };

class C: public B

{ public:

 C()

 { cout<<"Constructor of C class"<<endl; }

};

int main() {

 //Creating object of class C

 C obj;

 return 0;

}

Output:

Constructor of A class

Constructor of B class

Constructor of C class

3) Multiple Inheritance

In multiple inheritance, a derived class can inherit from more than one Base classes. It means

that Multiple inheritance allow a single child class to have multiple parent classes.

Example of Multiple Inheritance:

// Class C inherits Class A and Class B both

#include <iostream.h>

class A

{ public:

 A()

 { cout<<"Constructor of A class"<<endl; }

};

class B

{ public:

 B()

 { cout<<"Constructor of B class"<<endl; }

};

class C: public A, public B

{ public:

 C()

 { cout<<"Constructor of C class"<<endl; }

};

int main()

{ //Creating object of class C

 C obj;

 return 0;

}

Output:

Constructor of A class

Constructor of B class

Constructor of C class

4)Hierarchical Inheritance

In this type of inheritance, a single Base class is inherited by multiple derived classes.

 Example of Hierarchical inheritance:

//Class B and Class C inherit from class A

#include <iostream.h>

class A

{

 public:

 A()

 { cout<<"Constructor of A class"<<endl;}

 };

class B: public A

{

 public:

 B()

 { cout<<"Constructor of B class"<<endl; }

};

class C: public A

{

 public:

 C()

 { cout<<"Constructor of C class"<<endl; }

};

class D: public A

{

 public:

 D()

 { cout<<"Constructor of D class"<<endl; }

};

int main()

 {

 C obj; //Creating object of class C

 return 0;

}

Output:

Constructor of A class

Constructor of C class

5) Hybrid Inheritance

Hybrid inheritance is a combination of more than one type of inheritance. For example, A

child and parent class relationship that follows multiple and hierarchical inheritance both

can be called hybrid inheritance.

Example of Hybrid inheritance :

#include <iostream.h>

class A

{ public:

 int x;

};

class B : public A

{ public:

 B() //constructor to initialize x in base class A

 { x = 10; }

};

class C

 { public:

 int y;

 C() //constructor to initialize y

 { y = 4; }

};

class D : public B, public C //D is derived from class B and class C

{ public:

 void sum()

 { cout << "Sum= " << x + y;}

};

int main()
 { D obj1; //object of derived class D

 obj1.sum(); return 0; }

